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ABSTRACT 

This paper describes a method for calculating line profiles and equivalent widths 
for the diffuse reflection of sunlight from a model planetary atmosphere. We base our 
numerical process on the method of invariant imbedding. The angular dependence of 
the diffuse reflection coefficient is approximated by a quadratic spline, which makes 
the calculation of reflected intensities particularly easy. We give an error analysis. 

Finally, we describe the construction of a general program for performing the 
calculations, and some preliminary results obtained for a simple model of the Venus 
atmosphere are given to illustrate its potential. 

I. INTRODUCTION 

Recent work on the interpretation of the absorption bands of CO, in the near- 
infrared region of the spectrum of Venus suggests that they are produced by 
multiple scattering in an optically thick atmosphere [l], [2]. The nature of that 
atmosphere remains obscure. 

Spinrad [3], has microphotometered the ten best old Mount Wilson IOO-in 
coude spectrograms of Venus, and has measured the equivalent widths of the 
12 unblended P-branch lines in the L-7820 CO, band at several different Venus 
phase angles. It is our aim to conduct numerical experiments in which we vary 
the parameters of simple models of the Venus atmosphere in an attempt to fit 
the observed line profiles and equivalent widths. 

We suppose that the atmosphere is locally plane-parallel, so that all atmospheric 
properties can be regarded as a function of height above the surface of the planet. 
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We consider only monochromatic radiative transfer, and suppose that scattering 
of radiation is isotropic with a mean free path depending upon height. Absorption 
at each frequency within a spectral line depends upon the variation of temperature 
and pressure with height. We assume that thermal emission is negligible in the 
region of l-7820. 

We shall begin by discussing the analytic and numerical methods we use to 
solve the radiative transfer problem, and assessing their convenience and accuracy. 
Then we shall describe the specification of a simple atmospheric model, before 
passing to an outline of the construction of the SNARK computer code which 
generates the monochromatic diffuse reflection matrices which we need. We 
store these on magnetic tape, and use a separate code, the SNARK EDITOR, to 
generate from them the data to be compared with observation. Both codes have 
been constructed so as to reduce the amount of manual data handling to a mini- 
mum. Automatic graph-plotting devices are used to generate line profiles and 
other data, and so make it easy to compare models. 

The paper closes with a description of the tests we have performed to justify 
our methods, and with an example of a production run. This is just one of a 
series of calculations on Venus which we hope to describe in detail elsewhere. 

II. THE DIFFUSE REFLECTION OF MONOCHROMATIC RADIATION 

FROM AN ATMOSPHERE 

II.1 The Dljiise Rejection Coejkient and its Use 

It is convenient to begin by defining the diffuse reflection coefficient. We consider 
some level in the atmosphere, and suppose it irradiated by a parallel beam of flux 
x F,, per unit area. Let this beam make an angle z - &, with the outward directed 
vertical, and v0 with some fixed tangential direction. Then the specific intensity 
of radiation in the direction defined by angles 0 and v can be related to F, by 
the linear relation 

(2.1) 

where ,u = cos 8, p0 = cos Bo, 0 5 0, 0,, 5 n/2, 0 5 v, v,, < 2n. The coefficient 
S is the diffuse reflection coefficient. It satisfies an equation described in Sec- 
tion 11.2. 

We now suppose that the level at which we have computed S is sufficiently 
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high in the atmosphere so that reflection and attenuation from higher levels can 
be ignored. Equation (2.1) then describes the reflection from a localized area of 
the atmosphere. In Appendix A we show, that the specific intensity of radiation 
reflected in a fixed direction (making an angle cos-‘p with the direction of the 
sun) can be written 

where 

M(p,p) = pp + Kl - pZ) (1 - iw’” > 

m(p,p) = max(0, pp - [Cl - p”> (1 - F”)l”‘), 

y = T 

tan p. = [l - p2 - po2 - p2 + 2ppoA’~2/(~ - w0). 

In the case of an isotropic scattering atmosphere, the S-coefficient becomes in- 
dependent of p and of po. We restrict ourselves to this case in the future. 

We can also compute the planetary albedo A,, defined as the fraction of inci- 
dent solar energy which is reradiated. Indeed 

nF,. - A,, = 2n 
s I, Z,(P) 4 (2.3) 

and we obtain easily 

A ,r = , :  j-1 S,.(p, ~3 4 4,. (2.4) 

Likewise, we can calculate the albedo a,(~~) of a localized area of the planet for 
radiation entering at an angle 0,. From (2.1) the flux emerging from the atmosphere 
is 

nH,. = nF,. - ,uo + a,,(,~~) = 2n 
s 1 ~z,.cU) 4 

so that 

(2.5) 

By using the fact that the amount of radiation entering the atmosphere with 
cos 8, in the range ,uo to ,u~ + dp, is nF,,. 2p, dpo, we recover (2.4). 
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II.2 Line Projiles and Equivalent Widths 

The specific intensity measured by a hypothetical detector on earth will be 
given by Eq. (2.1) or (2.2), or by some similar expression. Near an isolated absorp- 
tion line, center vJ, the specific intensity will be reduced. If we denote the specific 
intensity in the far wings of the line by I,&, p) [or Z,(p)], we can define the line 
profile as the ratio Z,.(,u)/Zm(~) for all values of v. It is in this sense that we shall 
use the term. 

We can define the equivalent width by the relation 

Wp, v,> = j,, [l - ZAP, pl)lL& P,>I dv (2.6) 

where dv denotes the interval (vJ - AK, vJ + dv,), say (AK, dv, > 0). The 
equivalent width is effectively the frequency spread of a completely black line 
giving the same total absorption. Provided the line is formed in a region of the 
spectrum far from any solar line, we may assume that the incident solar flux 
depends only weakly on v. In this case we can approximate (2.6) by 

where I,.@) is defined by (2.2), then 

W,4 = j,, [l - M,4lR&41 dv. (2.8) 

We shall use expressions (2.7) and (2.8) to compare with the observational data. 

II.3 Calculation of‘ the Coeficient of D@ise Rejection 

The coefficient of diffuse reflection can be derived most conveniently as the 
solution of an initial-value problem. It satisfies the equation 
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0~ p, ,uO 5 1,O ( G,,(Z) L 1, with S&U, ,D~; 0) given. In this equation, S,.(,U, ,u,,; z) 
represents the coefficient of a diffuse reflection for a plane slab of normal 
optical thickness t. The albedo for single scattering, LSZ,.(t), is the ratio of the 
scattering cross section of the medium to the total cross section, and is in general 
a function of position within the slab. Equation (2.9) can be derived most simply 
by considering the change in S,(p, ,u~; t) arising from the addition of a layer 
of optical thickness 6t at the top of the slab and allowing 6~ to tend to zero. 
The derivation is well-known [4], [5], [6], and will not be given here. Busbridge 
[5], demonstrates that for any G,,(z) satisfying 0 ( G,,.(z) ( G1 -=c 1, Eq. (2.9) 
has a solution. 

III. NUMERICAL SOLUTION OF THE DIFFUSE REFLECTION PROBLEM 

The simplest way of deriving an approximate solution of (2.9) for a fixed value 
of v is to replace the integro-differential equation by a set of simultaneous ordi- 
nary differential equations, 

-$ &j(t) + &j&j(z) = kf%(Z>(pj(~>, 

where Lij = ,!A;’ + ~71, 

1 _( i P N. The ,ui form a partition of [0, I], 

The set of functions S,(t) is obviously symmetrical in i and j, 

S,(t) = Sji(Z) 

and for 0 ( i 5 N 

Sio(r) = Soi = 0, and qo(t) = 1. 

(3.2) 

(3.3) 

The boundary conditions prescribe Sij(Z) at z = 0 for all values of i and j. 
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The accuracy with which Sij(z) approximates S,&, pi; t) clearly depends 
on two things: the process used to derive approximate solutions of (3.1), and the 
quadrature formula used to approximate the right-hand side of (3.3) in terms of 
members of the array SJz). We dispose of the former first. On the Atlas com- 
puter, solution of simultaneous ordinary differential equations such as (3.1) is 
conveniently handled by a FORTRAN library routine for the Runge-Kutta-Merson 
process [7], [8]. This subroutine provides an error estimate which permits us to 
control the step-length dz. This depends slightly on the value of N, and we have 
found that the estimated local truncation error when N = 8 is at worst 1O-5 
or 10-e with dt N 0.1, quite a large enough step for practical purposes. 

The method of quadrature to be used in approximating the right-hand side 
of (3.3) presents a much more serious problem. In choosing such a quadrature 
formula, we need to assess both its accuracy and suitability for the job. We 
could, for example, follow Bellman et al. [6] and employ Gauss-Legendre qua- 
drature of order IV. Although this gives an efficient approximation to cp(z, pui), 
it makes it difficult to compute the emergent intensity from (2.2) since we do not 
know how to reconstruct the underlying Hermite interpolation polynomial with- 
out knowledge of the derivatives at the integration points. Calculation of (2.2) 
would still be difficult, even if we had this information, because of the high order 
of the interpolation polynomial. 

For this reason, we have chosen to use a quadratic spline to interpolate be- 
tween pivotal values of p. This provides simplicity of calculation with accuracy 
little inferior to that of the Gauss-Legendre quadrature in this application. 
The spline is completely defined by the values of the function at the joints pi, 
i = 0, 1, . ..) N, by the requirement that the spline have a continuous gradient at 
each joint, and by a boundary condition. Now as p’ -+ 0, it is not difficult to show 
that 

S,iP, Fc’; t) = h.(t) & cp(z,p) { 1 + +- &(r)~ In (q) + . ..} (3.4) 

so that 

F& S&u, p’; t) - G,,(t) cp(z, p) as $ - 0. 

Thus (3.4) provides a suitable boundary condition. 
We now define for a fixed value of ,u 

f(d) = S,,(/A,p';z), fk =f&J (k = 0, 1, ***, N) (3.5) 

and a quadratic spline @(f; p) approximating f(p), 
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(3.6) 

where, if lktl12 = pktl - pk, 

@k+1,2(f; pu> = 
b - Pk)fk+l + (Pk+1 - Pvk 

1 

_ gk+1,2 cuk+1 - P) (P - Pk). 

k+1/2 12 k+1/2 

Clearly, 
@k+l,z(f; pk) = fk 3 @k+l,2(tif; pk+l) = fk+l 

as required, and the condition 

(3.7) 

can be satisfied if 

gk+ll2 -- 
1 ktli2 

\ gk-l/2 _ fk+l - fk _ fklt fk-’ 
lk-l/2 1 

(3.8) 
k+ll2 k l/2 

for 1 5 k 5 N - 1. If we provide a boundary condition to determine g1,2, say, 
these equations define gk+1,2 uniquely for 1 5 k 5 N - 1. We choose 

at p = 0, giving 
fo' = @i/2 (f; PI 

81/2 = fI - fo - ~l,Zfol ’ (3.9) 

The truncation error, defined by 

Rk+u2(f; P) =fb) - @kt1/2(f; P) 

is studied in Appendix B. For the important case in which the joints are uniformly 
spaced (lk+1,2 = N-l = I for all k), we have 

R 2m+1,2(f; P) = - 8 e2u - WY;; + .*a , 

m = 0, 1, 2, . . . . (3.10) 
R 2??a+3,2(f; pu) = + 8 Wl - e)2wLLl + a** 3 

where 8 = (,u - ,#zk)/l, 0 5 8 5 1. In our case, for” does not exist,but for the pur- 
poses of (3.10) we define fi” = fl”‘. Thus 

2MP 
1 &+df-i /-J) 1 < sl k = 0, 1, . . . . 

where M = supk ] fk”’ I. 
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We insert (3.6) into the right-hand side of (3.3), and, after eliminating ,f;,’ 
with (3.4) we arrive at the approximation 

1 1 IV 

(i%(t) = l _ 4 6,,.(z)d + - c Ck(~)Ski(~), 2 ?,+I 
(3.11) 

for 1 5 i L N, cp&) = 1. The coefficients ck(t) are defined by 

Q(Z) = cp + C:“‘(t) 

where 

&l) _ 
1 

k = 2, 3, . . . . N - 1, 

cil) - 1 - L.!EL In - 

47-l,, 

and 

c:“‘(z) = ~[~6”(Z) d . CA” - dk] / [l - &Z,,(z) A], k = 2, 3, . . . . N 

where, if 

I h 4 
kili2 k+ll2 = s ::” bk+l -PHP-Pk)~Y 

N-l 

d = z (- Ilk hk+l,2 > 
k=O 

ek-112 ek+1/2 

dk = i&1/2 - G’ 
k = N, N - 1, 1.. , 1 , 

eN+l/2 = 0, eNA/ = h-1/2 , ek-l/2 = hk-u2 - (hk+l,2 + ek+1,2) 

for k = (N - l), (N - 2), . . . . 2 in succession, and e1,2 = - &(e3,2 + h,,,). 
Using (3.10), we can estimate a bound for the error functional 

and we find 

(3.12) 
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We are now in a position to estimate how the truncation error is propagated 
by the differential equations (3.1). These may be integrated formally to give 
the solution 

S,(t) = exp(- &z)Sij(0) + 1,” exp[- ~ij(t - t)] G,,(t)qi(t)qj(t) dt. (3.13) 

If Sij(0) is exact, the error aij(z) in Sij(r) is given to lowest order by 

%j(Z) = i‘,’ exp[-- &(t - t)] h(t)[qi(t)R*(q; pj) + vj(t)R*(y; pi)1 dt 

and so, using (3.12). 

I uijw I 5 g P /I exp[- &(‘G - t)] dt 

< t4P.i Mg 12 
-24’ ’ 

(3.14) 

where 9 is a uniform bound for cpi(r). We therefore expect the truncation error 
in the solution S&r) to converge as (1 /N2). 

IV. NUMERICAL COMPUTATION OF REFLECTED INTENSITIES 

We can use the interpolating spline (3.6) to write down approximations for 
reflected intensities. Thus the intensity of radiation reflected from the planet at 
a given phase angle can be written as in (2.2), 

where, for an isotropic scattering atmosphere 

Now using (3.5) and (3.6) *we find 

where 
N-l 

(4.1) 

(4.2) 

(4.3) 
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We tabulate the functions fi, vi(t), so that the gi+ll’z can be determined from 
(3.8), (3.9), and (3.4). If p is not one of the values of pi at which the solution is 
given, we use (3.5) and (3.6) to set up the values of sj. 

The coefficients are defined as follows: 

CjY4 = Aj+~&) 4 Bi-I&) (1 L j 5 NJ (4.4) 

In special cases the formulas simphfy. When p = I, pJ 5 p ( pJfl, we have 
Q 3tr,2 = Rj+l/z = 0 for all j, Pj+l/z = 0 when j # J, and PJ+l,2 = Z. Thus, in 
terms of the interpolating spline (3.6) we have 

41) = 22 %+l,2(f; P> * (4.6) 

Similarly, when p = 1, pJ ( p 5 pJ+l , 

S(P) = 32 @J+df; Pu) . (4.7) 

Once we have s&), the quadrature (4.1) can be performed by any convenient 
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method. We find that the trapezoidal rule gives at least two significant figures, 
which is adequate for our purposes. 

We can calculate the plane albedo, defined by (2.5) in a similar way. With 
f(P) = S,.b, PO; t) for fixed ,u,, we have 

(4.8) 

The spherical albedo can be computed from (4.8) by approximating to 

with the trapezoidal rule. 

V. SIMPLE MODEL ATMOSPHERES 

We now list the specific assumptions needed to construct our atmospheric 
model. 

V. 1 Hydrostatic Equilibrium 

The condition of hydrostatic equilibrium is expressed by the equation 

dp = - ge dz, (5.1) 

where p is pressure, g the acceleration due to gravity, and e the density at height 
z above the planetary surface. 

V.2 Composition 

We assume uniform composition. Let ei be the density of constituent i, e = 2~~. 
Then the fraction of constituent i by mass is 

ri = pi/e (a constant), 

Zri= 1. 

(5.2) 

Similarly, if pi is the molecular weight of constituent i, the fraction of i present 
by number (or volume) is 

si = (eh-li) I (e/p) (a constant), 

f-~ = e/G e&i>, Z si = 1. 
(5.3) 
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If there are only two gases, there is a particularly simple relation between r(= rl) 
and s(= sl), namely 

s=rlr++-r). 
[ 1 

The equation of state is assumed to be 

P = e RTl,u. (5.5) 

V.3 Height Variation of Temperature 

The variation of temperature is determined by the heat balance in the atmosphere 
together with the equation of state and the equation of hydrostatic equilibrium, 
and thus can only be obtained ab initio by solving a complex radiative transfer 
problem, for which we have no data. For our purposes, we shall assume a uni- 
form lapse rate of temperature 

1 
where T,, is the temperature at some pivotal height z,,, and L is a characteristic 
height. 

V.4 Dependence of Other Physical Parameters on Height 

Using (5.1), (5.5), (5.6), and the relation 

g=g, l-c2! 
[ 

-2 

a 1 
expressing the variation of gravity with height (a is the radius of a sphere con- 
centric with the planet at height z, above the surface), we can obtain a a relation 
between p and z, namely 

P 
[ 

1 - (z - z,)/L y -= 1 I -y (z - zo> (a + L) 
1i-q exp a 

----____ 9 1 (5.8) 
PO a + (z - 23 

where 
y = (L/H) (1 + L/a)Y, 

H = RTohgo. 
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To the order of accuracy needed we have j z - z0 1, L< CI, so that 

T/To = (P/POP’, 

e/e0 = (PlPP’Y, 

Z = z. + L(l - T/T,). 

V.5 Tabulation of Atmospheric Parameters 

It is convenient to use the following units: 

Pressure : mb = lo3 dyne/cm2 

Temperature : OK 

Height: km = lo5 cm 

Density : g/cm3 

Frequency : cm-l, 

As the fundamental parameters of the model we take 

(i) Scale height: H (km) 
(ii) Scale height for temperature: L (km) 
(iii) Effective gravity: g, (cm/sec2) 
(iv) Pivotal pressure: p0 (mb) 
(vi) Ground temperature: Tg (OK). 

Then we can easily derive the remaining parameters: 

y = L/H 

,u = (RTJgH) x 10s5 g/mole = 831.7 (T,,/gH) g/mole, 

e0 = 10-2p,/gH g/cm3 

pg = P~T,IT&’ > 

after which the distributions (5.9) can be evaluated. 

V.6 Optical Depth Calculation-Venus 

(5.9) 

At this point we must make a more definite assumption about the constitution 
of the Venus atmosphere. We assume that there are only two constituents of 
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importance, namely CO, (constituent 1) and N,. We assume that the main absorp- 
tion of radiation near the A-7820 CO, band is due to the band itself and that N, 
is transparent. There is a material present which scatters radiation and which is 
uniformly mixed in the atmosphere. There may be a small residual background 
absorption in the wings of the lines due to materials other than CO,. 

We compute the CO, absorption from the formula 

where vJ is the central frequency of the Jth line, /3 depends on the rotational energy 
constant B by ,$ = Bhc/kT,, (Bhc/k = 0.5614’K for CO& and Ii, measures the 
band strength. The factor g, = J for the P-branch [vJ = v0 - 2BJ] and J + 1 
for the R-branch [vJ = v0 + 2B(J + l)]. The linewidth a is given by 

c-0(-g (y (5.11) 

where 131 

3oo a* = lo-“p, T 
( ) 

1’2 (0.07 + 0.03s) 
0 

with s obtained from (5.4) as 

s = 7r/(ll - 4r) 

for a binary mixture of CO, and Nz. 
For convenience we now introduce the notation x = p/pa, y = To/T = x-l/y, 

u, = (v - vJ)/ao, and assume that the lines do not overlap. Then 

K,, = WOabo) exp[- BJ(J + 1 )A [ --:$$I (5.12) 

If u is the scattering cross section and Go the albedo in the wings of the line (nearly 
unity), then the single-scattering albedo is 

&(UJ, 4 = 
c 

rK,, + (a/Go) 

= { (30~ + (f) (--j$) exp[- #&6,(J + l>vl [ uJ2x~~2y]}w1 (5.13) 
0 

where C = lo8 (rK,), and f = lo5 a. The optical depth at this frequency is de- 
fined by the equation 
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do = - [rK,, + (~/4Jl e dz 

zz 

. 

(5.14) 

This equation, regarded either as a differential equation for t in terms of x 
or for x in terms of z, can be solved by the same Runge-Kutta procedure as are 
the invariant imbedding equations (3.1). 

The preceding equations make it clear that the ratio i/t, which is unknown, 
controls the variation of the albedo for single scattering with height and that i 
controls the overall optical thickness of the atmosphere in the wings of the line. 
Thus if we fix the parameters listed in Section V.5, the albedo of the planet far 
from line centers fixes 1, and the equivalent width of the absorption lines fixes 
?. Since f = 103(r K,,), this determines the relative abundance r, provided K,, is 
known. Kaplan (private communication) has quoted the equivalent width of 
the J = 16 line for a path length of 8-km-atm. CO2 at around 300’K as 40 mA 
(0.06 cm-l). This gives the value 

K,, = 2.5 x 10-3j3 cm2/g cm . (5.15) 

which we have used in our runs. 

VI. THE SNARKAND SNARKEDITOR CODES 

The principles guiding the construction of these codes were laid down in the 
introduction. Block diagrams of the codes are set out in Figs. 1 and 2. The proce- 
dure is dictated, to some extent, by certain features of the Ampex magnetic tape 
system connected to the Science Research Council’s Atlas computer at Chilton. 
The codes as a whole have been written in the local FORTRAN language (HARTRAN) 
with the exception of three subroutines for handling magnetic tapes. The most 
efficient way of transmitting information to and from magnetic tape is to work 
with blocks of a fixed length of 512 words. Blocks on the tape are individually 
addressable, so that it is possible to write an index at the beginning of the tape 
describing the current state of the computation at the end of every run, thus 
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facilitating restarts with a minimum of manual intervention, Output of data to 
magnetic tape and its subsequent retrieval is buffered by blocks. 

With these remarks, the rest of Fig. 1 is almost self-explanatory. The running 
instruction parameter NACT defines the initial action of the program. To read 

FIG. 1. SNARK code. Simplified flow diagram. 

in data for a new model we set NACT = 1. The code then sets up all the basic 
information needed, including the constants cp) of (3.11) and the tabulation 
of Section V.5, and transmits the whole of this data (2 blocks) to magnetic tape. 
It also prepares the buffers in which the matrices S, are to be stored. The option 
NACT = 2 permits a restart from the position reached in a previous session on 
the machine. The basic data are retrieved from tape, the contents of the buffers 
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at termination of the last session are reconstituted, and calculation proceeds 
from there. In a similar way we use NACT = 4 to permit a restart specifying 
additional lines to be computed, and NACT = 5 to allow us to go back to where 
an error occurred. The option NACT = 3 terminates the session. 

FIG. 2. SNARK EDTTOR code. Simplified flow diagram. 

The main computing loop consists of a cycle in which we first of all specify 
values of J and u,, and then use (5.14) to tabulate x and &(z+, x) for a suitable 
distribution of values of r. Then we solve Equations (3.1) using (3.1 l), as described, 
to obtain S&r) at the top of the atmosphere. When complete the array S&z) 
is stored in the buffer and transmitted to tape when the buffer is filled. We can 
also arrange for tables of t(uJ) and &(u,, x) against logp(x) to be transmitted 
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to an automatic graph-plotter via IBM &in. magnetic tape. The cycle continues 
until we have exhausted all pairs of values of J and u,. 

The SNARK EDITOR code (Fig. 2) extracts information from the magnetic tape 
and computes a,(&), A,, and I,@) as described in Section IV. Some of the in- 
formation, such as equivalent widths and albedos, is printed, the remainder 
transmitted to graph-plotter, so that we obtain graphs of I,.($ far from line 
centers, and R,,(,E) against v automatically. For an isolated line we must estimate 
the contribution to the equivalent width from the far wings outside the tabulated 
range of u,. We fit the tail of the line by an expression of the form 

whose contribution is easily evaluated. 

VII. TESTS AND SPECIMEN CALCULATIONS 

Our first use of the program has been to study the validity of the numerical 
method. We have examined the accuracy and convergence of our solutions for 
the case of conservative scattering (G,,(z) = l), and we have compared our 
results with other published solutions, notably those of Bellman et al. [6]. Starting 
with the initial conditions Sij(0) = 0, we integrated the equations (3.1) over the 
range 0 5 r 5 6.3 in steps of 0.1. We took for simplicity a uniform distribution 
of ,u-values, with 1 taking values of 0.25, 0.125, and 0.1 (N = 4, 8, 10). 

To begin with, the truncation error estimate provided by the Runge-Kutta- 
Merson subroutine was always small. It was largest in the first step from z = 0 
to 0.1. At this point it was 1.4 x 1O-5 for N = 4, and fell rapidly to order 1O-e 
for z N 3. The accuracy demanded was 10-4, so that it was never neces- 
sary to cut the step size. The behavior for larger values of N was similar, although 
it was necessary to halve the step size for the first three intervals for N = 8 and 
10. This is to be expected because of the increase in max[&] = 3Lll as N increases. 

Next, let us consider the question of convergence and of quadrature errors. 
For ease of comparison with the solution of Bellman et al. [6], we choose the only 
integration point which is common to the two integration schemes, namely 
,U = ,uO = 0.5, at t = 6.3. The numerical solutions for the diffuse reflection 
coefficient S(O.5,0.5; 6.3) are shown in Table I. The line labeled SNARK 2 contains 
values calculated from the quadratic spline formulas, and that labeled SNARK 1 
assumes only a linear variation between joints. The SNARK 2 values converge 
much more rapidly with N, and it is clear that this is a greatly superior approxi- 
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TABLE I 

NUMERICAL VALUES OF S (0.5, 0.5; 6.3) WHEN (3(z) = 1 FOR ALL T. 

N 4 a 10 Limit 

SNARK 2 0.8641 0.8769 0.8785 0.8811 f  0.0002 

SNARK 1 0.8085 0.8586 0.8661 - 

mation. The error estimate (3.14) has been used to extrapolate to the limit as 
N--+ 00; taking the SNARK 2 values for different Nin pairs, we find a limiting value 
around 0.88 11, wtih an uncertainty of about 0.0002. This is in fair agreement 
with the figure of 0.88164 quoted by Bellman et al. [6], who used 7-point Gauss- 
Legendre quadrature. Our solution with N = 8 appears to be in error by not 
more than PA, which is quite good enough for our purposes, and we have adopted 
N = 8 as standard in all our production calculations. The behavior for other 
values of ,u,,uO and t is comparable. 

As an example of a practical calculation done with the code we have computed 
an atmosphere whose basic parameters are listed in Table II. This is essentially 

TABLE II 

MODEL ATMOSPHERE PARAMETERS 

Scale height H 
Temperature Scale Height L 
Effective gravity g, 
Pivotal temperature To 
Ground temperature T, 
Pivotal pressure p0 

Derived parameters 
y  = L/H = 6.5275 
e. = 1.05 x 1O-6 g/cm* 

7.423 km 
48.454km 

890 cm/se? 
230°K 
7WK 

7mb 

p = 28.96 
pg = 10’mb 

Optical parameters 

K. = 6.102 x 1O-e cm’g-*/cm-l 
a, = 5.918 x lo-’ cm-l (corresponding to CO, mixing ratios r = 0.2 by mass, 

s = 0.14 by volume) 
(7, = 0.985 

t/z = 500 
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the “standard” atmosphere proposed by Kaplan [9], with the exception that we 
have retained the same scale height H although we have varied the CO, mixing 
ratio s from his value of 10%. The effect of this inconsistency is small. The value 
of &, has been chosen so that the planetary albedo far from the line center, A,. 
(Table III) is computed to be about 75%. We have assumed all radiation reaching 

TABLE III 

PLANE ALBEDO G,, = 0.985, S(p, ,u,, ; 0) = 0 

PO = ,125 .250 .315 .500 .625 .750 .875 1.000 

%c4J) = .834 .807 .782 .760 .738 .718 .699 .681 

Spherical Albedo A, = .734 

the surface of the planet is absorbed. A value c&, = 1.0 makes the planetary al- 
bedo considerably larger, 82%. It is clear that we could not allow i to change much 
without making drastic changes to the value of A,,. 

The dependence of r and G,,, on pressure is shown in Figs. 3,4, and 5 for three 
different frequencies in the J = 18 line profile. Figure 4 refers to the line center, 
Fig. 5 to the maximum value of / Y - vJ / that was computed (500 a,,), and Fig. 3 

0.5 
WP) 

$P, 

r 

G*(p) 

1.0 

IO 

FIG. 3. Variation of albedo and optical depth, with logarithm of pressure as ordinate, far from 
the line center. 
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5 

T”(P) 
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FIG. 4. Variation of albedo and optical depth, with logarithm of pressure as ordinate, for 
the centre of the J = 18 line. 

W”(P 
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I 
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c%(P) 

5 
7” (P) 

1.0 

IO 

FIG. 5. Variation of albedo and optical depth, with logarithm of pressure as ordinate, in the 
wing of the .I = 18 line, ( v  - v18 1 = 0.3018 cm-l. 
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to 1 v - vJ 1 -j co, where the albedo for single scattering has the constant value 
c&, at all levels in the atmosphere. This provides us with a standard of intensity 
I,@) whose variation with ,!j is shown in Fig. 6. The phase dependence of the 
equivalent width of the line W(p) is shown in Fig. 7, and a selection of line profiles, 

a5 - a5 - 
Im QivF, Im QivF, 

a4 - a4 - 

0.3 0.3 

0.2 - 0.2 - 

FIG. 6. Diffusely reflected specific intensity, Z,(p)F, versus p far from the line center. 

cm“ 
0.1 

I 

a051 

+ 

$ + 

+ 

FIG. 7. Equivalent width for the J = 18 line vs. ,C. The crosses represent observed values 
quoted by Spinrad [3] in his Table I. One of his points at ,C = 0.391 lies off scale at 0.136 and is 
therefore not shown. 
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R,@)/R&Ti), are given in Fig. 8 for various values of the cosine of the phase 
angle. We intend to discuss elsewhere the physical implications of our calcula- 
tions, of which these results form a sample. 

The SNARK and SNARK EDITOR codes both need about 50 blocks of 512 words 
of store on Atlas. Of this, only about nine blocks are actually used for data by 
the EDITOR, six blocks by SNARK, the remainder being program and library rou- 
tines. Most of the computing time was required by SNARK which took approximately 
6 set to integrate each of the 33 S, arrays through about 70-75 steps. The running 
time decreased to about 4 set for each Sij array when symmetry was used to 
reduce the number of differential equations needing solution. Another minute 
was required for tabulating the atmospheric parameters and calculating the in- 
tegration coefficients. The EDITOR run was completed in about one minute. 

Line proflies for phase cosines 
1.000 0.750 0.375 o.cca -0.300 

FIG. 8. Computed absorption line proties for the J = 18 line for various values of p. The 
curves can be discriminated by observing that the absorption is an increasing function of ,ii. 

APPENDIX A. DERIVATION OF EQ. (2.2) 

We give an elementary vector derivation. Choose a master set of axes (I, J, K), 
an orthonormal triad with K directed from the center of Venus towards the earth. 
Define the phase angle a by a = cos-l ji, so that if the plane containing Sun, 
Earth, and Venus is perpendicular to J, the Sun is in the direction 

L = sina + cosaK. (1) 
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Likewise, in the master axes, a point on the surface of Venus has coordinates 
(sin 0 cos @, sin 0, sin @ cos 0). At this point we construct a local system of 
axes with an orthonormal triad (i, j, k), where i is in the direction of increasing 
0, j in the direction of increasing @, and k in the local vertical so that 

i = (cos 0 cos @, cos 0 sin @, - sin O), 

j = (- sin @‘, cos @, 0), 

k = (sin 0 cos @, sin 0 sin di, cos 0) 
(2) 

in the master axes. In the local axes a vector in the direction having polar 
coordinates 0(= cos-l,~) and p has Cartesian coordinates (sin 0 cos p, 
sin 8 sin p, cos 19). The rehected beam is in the direction K, which defines 

e=o, p=n (3) 

at the point (0, di) on the planetary surface. Similarly, the incident beam is in 
the direction - L so that 

1 2 PO = pp + [(l - p2> (1 - ji2)]1’” cos @ 2 0, 
(4) 

(1 - jTZ2)li2 sin @ 
tan % = - p(l - p2)llz COS gj - p(l _ p2)1/2' 

We can now calculate the specific intensity in the direction of the earth by aver- 
aging over that part of the planet’s surface defined by (4), so that 

where a is the radius of the radiating surface, and dC is the projected element 
of area on a plane normal to K. Thus 

dx/na2 = a2 sin 0 d(- sin 0) d@lna2 

= ,u dp d@/n 

by (3), and so by (5) and (2.1) 

(6) 

Changing to integration variables ,u, ,u,, instead of ,u, @ and allowing for symmetry, 
we obtain (2.2). 
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APPENDIX B. TRUNCATION ERROR IN SPLINE INTERPOLATION 

For simplicity we consider only uniformly spaced joints pk = kl, 0 5 k ( N, 
1 = N-l. We can then use finite-difference operators and write (3.8) in the form 

gk+l/z = d2fk - g&,/2, 1 5 k 5 N - 1 (1) 

and (3.9) in the form 

g,/, = El - (1 + ~~)~-llft 
= (4 12D2 - 4 HD3 + . ..) fi. (2) 

It is then easy to establish by repeated application of (1) together with E-l = e-lD 
(Taylor series operator) that 

gzrt+l/z = (S 12D2 + 8 13D3 + -..)hn II = 1,2, . . . 
(3) 

g2rt+3/2 = (4 12D2 + Q 13D3 + ..-)fi,+l n = 0, 1, 2, . . . 

Now for ,D = (k + 0)E, 0 ( f3 4 1, we have the Taylor series expansions 

f(P) = exP@lD>.h = ew[-- (1 - WMi+l 
= (1 - 6)eXp(olD)fk + 8 eXp[- (1 - e)lD]fk+l 

= (1 - e)fk + efk+l + (eXp[@D] - 1 f e(l - eXp[w)}fk 
(4) 

= ci - e>fk + efk+l - e(i - e) [$ 12D2 + 6 (1 + e) PD3 + . ..I fk . 

Comparison with (3.6), which can be put in the form 

@k+llz(fi P> = ci - @fk + efk+l - gk+l12e(1 - e)5 

immediately gives the truncation error 

Rk+df-iP) =f@) - @IC+I,B(~;) 
- Q eyl - e) z3f;" + . . . for k = 0, 2, 4, . . . (5) = 
+ 6 e(i - ey Pf;" + . . . for k = 1, 3, 5, . . . , 

where we write fo"' for fi"' in the case k = 0. [As Eq. (3.4) shows, derivatives 
of f(p) higher than the first do not exist at ,U = 0, and we make this definition 
of fi" for the sole purpose of preserving symmetry in Eq. (5)]. 
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The corresponding error in ‘p(z; ,M) can be written 

where 

For k = 0, 

=-.-.. ’ yl3(- l)k+lf;rr j-1 Fk; & 

12 k-0 

yk(e) = @( 1 - 6) for k even 

= e(i - ey for k odd. 

s 
’ yk(e> de = L 

0 8 6’ 
and clearly 

Thus 
s 

’ ul,te) o +e de < j-i JyQ de = { : if k” ;; TJ 

IR*(cp;pi)I <kFM(;)=$ 

when N is even, giving the formula quoted in the text. 
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